Program	BS Physical Education	Course Code	PE-355	Credit Hours	02
Course Title	Sports Biomeo	chanics (The	ory)		

Course Introduction

This course offers a comprehensive study of biomechanics in the context of sports and physical education. It covers the principles of mechanics as they apply to human movement, focusing on analyzing and improving athletic performance and reducing injury risk. Students will learn through theoretical concepts and practical applications, including motion analysis, force measurement, and biomechanical software.

Learning Outcomes

On the completion of the course, the students will:

- Understand the fundamental principles of biomechanics and their application to sports.
- Analyze human movement using biomechanical principles.
- Apply biomechanical concepts to enhance athletic performance and prevent injuries.
- Utilize biomechanical tools and technologies for movement analysis.
- Critically evaluate biomechanical research and its implications for sports practice.

Course Content		Assignments/Readings
	Introduction to Biomechanics	
Week 1	Definition and scope of biomechanics	From Books and Class
	 History and development of biomechanics in sports 	Lectures
	Overview of the course	
	Basic Principles of Biomechanics	
	Dasic I finciples of Diomechanics	
Week 2	Kinematics and kinetics	From Books and Class
	Types of motion: linear, angular, and general	Lectures
	• Forces and their effects on movement	
	Anatomy and Functional Biomechanics	
W1-2		From Books and Class
Week 3	 Musculoskeletal system and its components 	Lectures
	 Functional anatomy related to movement 	
	Muscle mechanics and joint function	
	Linear Kinematics	
Week 4		From Books and Class
VV CCR 1	Displacement, velocity, and acceleration	Lectures
	Projectile motion in sports	
	• Case studies and examples	
	Angular Kinematics	From Dools and Class
Week 5	Angular displacement, velocity, and acceleration	From Books and Class
	Rotational motion in sports	Lectures
	 Case studies and examples 	
	Linear Kinetics	
***		From Books and Class
Week 6	Newton's laws of motion	Lectures
	• Application of forces: gravity, friction, and air	
	resistance	

	Impulse and momentum	
Week 7	 Angular Kinetics Torque and moment of inertia Angular momentum and its conservation 	From Books and Class Lectures
Week 8	 Application to sports movements Practical Session: Motion Analysis Techniques Introduction to motion capture systems Analyzing sports movements using video analysis Practical applications 	From Books and Class Lectures
Week 9	 Biomechanics of the Lower Extremity Hip, knee, and ankle biomechanics Common injuries and prevention strategies Case studies and applications 	From Books and Class Lectures
Week 10	 Biomechanics of the Upper Extremity Shoulder, elbow, and wrist biomechanics Common injuries and prevention strategies Case studies and applications 	From Books and Class Lectures
Week 11	 Biomechanics of the Spine Structure and function of the spine Spinal loading and injury mechanisms Case studies and applications 	From Books and Class Lectures
Week 12	 Equipment and Technology in Biomechanics Force plates, electromyography (EMG), and pressure sensors Use of software for biomechanical analysis Emerging technologies in biomechanics 	From Books and Class Lectures
Week 13	 Enhancing Athletic Performance Biomechanical analysis of technique and skill Optimizing performance through biomechanical principles Case studies and practical examples 	From Books and Class Lectures
Week 14	 Injury Prevention and Rehabilitation Mechanisms of sports injuries Biomechanical strategies for injury prevention Rehabilitation techniques and their biomechanical basis 	From Books and Class Lectures
Week 15	 Practical Session: Biomechanical Research and Data Analysis Designing and conducting biomechanical research Data collection and analysis Presenting biomechanical research findings 	From Books and Class Lectures

	Review and Final Exam Preparation	
Week 16	Payiary of key concents and principles	From Books and Class
	Review of key concepts and principlesMock exams and practice questions	Lectures
	Final exam preparation	

Textbooks and Reading Material

Textbooks

- Hall, S. J. (2019). Basic biomechanics (8th ed.). McGraw-Hill Education.
- Hamill, J., Knutzen, K. M., & Derrick, T. (2020). Biomechanical basis of human movement (5th ed.). Wolters Kluwer Health.
- Luttgens, K., & Hamilton, N. (2021). Kinesiology: Scientific basis of human motion (12th ed.). McGraw-Hill Education.
- McGinnis, P. (2017). Biomechanics of sport and exercise (4th ed.). Human Kinetics.
- Robertson, G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2018). Research methods in biomechanics (2nd ed.). Human Kinetics.
- Watkins, J. (2018). An introduction to biomechanics of sport and exercise (2nd ed.). Routledge.

Suggested Readings

- Journals: Journal of Biomechanics, Sports Biomechanics, Clinical Biomechanics
- Websites: International Society of Biomechanics, American Society of Biomechanics
- Videos: Online tutorials and lectures on biomechanics and movement analysis